US009152962B2

a2 United States Patent

Osias

US 9,152,962 B2
*QOct. 6, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

PROVIDING A STATUS OF A TRANSACTION
WITH AN APPLICATION ON A SERVER

Inventor: Michael J. Osias, Budd Lake, NJ (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1609 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 12/118,485

Filed: May 20, 2008

Prior Publication Data
US 2008/0215677 Al Sep. 4, 2008

Related U.S. Application Data

Continuation of application No. 10/606,985, filed on
Jun. 26, 2003, now Pat. No. 7,398,291.

Int. CI.
GOGF 15/16 (2006.01)

G06Q 20/40 (2012.01)

HO4L 29/08 (2006.01)

HO4L 29/06 (2006.01)

USS. CL

CPC oo GO6Q 20/40 (2013.01); HO4L 67/02

(2013.01); HO4L 67/14 (2013.01); HO4L
67/142 (2013.01); HO4L 69/28 (2013.01)
Field of Classification Search

CPC ... G06Q 20/40; HO04L 69/28; HOAL 67/14;
HO4L, 67/02; HO4L 67/142
USPC oo, 709/203, 224, 231, 218; 725/16;

710/267; 705/26
See application file for complete search history.

50

(56) References Cited

U.S. PATENT DOCUMENTS

5,754,772 A 5/1998
5,774,670 A * 6/1998
5,963,915 A * 10/1999
6,098,093 A * 82000
6,226,677 B1* 5/2001
6,263,364 B1* 7/2001
6,385,636 Bl 5/2002 Suzuki

6,434,651 B1* 82002 Gentry, Jr.cccooininne 710/260

(Continued)

Leaf
Montulli
Kirsch

709/227

705/26
Bayeh et al. ... 709/203
Slemmer 709/227
Najork et al. ... 709/217

FOREIGN PATENT DOCUMENTS
WO 0142908 A2

OTHER PUBLICATIONS

6/2001

IEEE Xplore, Search Query, Feb. 26, 2008, 1 page.

Primary Examiner — Thuong Nguyen

(74) Attorney, Agent, or Firm — Yee & Associates, P.C.; Lisa
J. Ulrich

(57) ABSTRACT

Under the present invention, polling code is generated on a
server and sent to a client in response to a transaction request
received on the server from the client. The polling code
includes a set of parameters such as a delay time and a polling
count. After expiration of the delay time, the client will poll
the server to request the status of the requested transaction. If
the transaction is complete, the client will be redirected to a
completion page. If the transaction is incomplete, and a poll-
ing count limit has not been reached, new polling code will be
generated that includes the delay time and a new polling
count. The new polling count is generated by incrementing
the old polling count by one. The polling cycle is repeated
until the transaction is complete, or the polling count limit is
reached.

25 Claims, 2 Drawing Sheets

~ BROWSER TRANSMITS | S1
HTTP REQUEST FOR A
TRANSACTION

REQUEST

SERVER AGENT
INVOKES APPLICATION
TO PROCESS THE

82

SERVER AGENT CALLS

CLIENT CODE
GENERATOR

POLLING CODE 1S

GENERATED AND SENT
TC BROWSER

AFTER DELAY TIME,
THE BROWSER
COMMUNICATES URL IN
POLLING CODE TO
SERVER AGENT

35

REDIRECT BROWSER
TO COMPLETION

YES REDIRECT BROWSER

EXCEEDED?,

TO EXCEPTION
PAGE

US 9,152,962 B2

Page 2
(56) References Cited 2001/0054012 ALl* 12/2001 Nayyarcccooenee. 705/26
2002/0046262 Al* 4/2002 Heiligetal. 709/219
U.S. PATENT DOCUMENTS 2002/0062369 A1* 52002 von Klopp et al. 700/224
2002/0065911 Al 5/2002 von Klopp et al.
6,470,378 B1* 10/2002 Tracton et al. ..coooovv...... 709/203 2002/0123972 Al* 9/2002 Hodgsonetal. 705/72
6,769,019 B2 7/2004 Ferguson 2003/0110161 Al* 6/2003 Schneider 707/3
« 2004/0107267 Al* 6/2004 Donker et al. 709/218
6,996,119 B2 2/2006 KOO .evvvvveeiviiiiieienenns 370/449
« . 2006/0123012 Al* 6/2006 Barthccccoovvvvvvvvinnnnns 707/10
7,398,291 B2* 7/2008 Osias ... - 709/203 2009/0077173 AL* 3/2000 Lowery etal, ... 709/203
7,673,045 B1* 3/2010 Battleetal.c.......... 709/225
7,792,948 B2* 9/2010 Zhaoetal.cc......... 709/224 * cited by examiner

US 9,152,962 B2

Sheet 1 of 2

Oct. 6, 2015

U.S. Patent

p S30IAIA
A NSEIVE
1 <4 \
A
4 |NOLLYOIday
STOVAYILNI ,
(] ol or
oz 0
A oLvaanao
o€ 13000 IN3ND o1 mm./ 'SAS
» 1dI¥0S
304N0S3Y
WwNyaxa [NIV HISMONE
gz| wanuas
J QM.\
zr WILSAS IINEIRTe
ININIDOYNYA
Nd <
NOILOVSNVHL E\ 0 <3
7
9z AMOWIW wh
gk SENYSES /
[‘Ol o

U.S. Patent

50

Oct. 6, 2015 Sheet 2 of 2 US 9,152,962 B2
BROWSER TRANSMITS S1
HTTP REQUEST FOR A L/
TRANSACTION
SERVER AGENT S2
INVOKES APPLICATION
TO PROCESS THE
REQUEST
SERVER AGENT CALLS S3
- CLIENT CODE |/
GENERATOR
POLLING CODE IS S4
GENERATED AND SENT
TO BROWSER
AFTER DELAY TIME, S5
THE BROWSER %
COMMUNICATES URL IN
POLLING CODE TO
SERVER AGENT
S7

COUNT

NO LIMIT

EXCEEDED?

YES

REDIRECT BROWSER
TO COMPLETION
PAGE

-S9

|

REDIRECT BROWSER
TO EXCEPTION
PAGE

US 9,152,962 B2

1
PROVIDING A STATUS OF A TRANSACTION
WITH AN APPLICATION ON A SERVER

This continuation application claims priority to co-pend-
ing U.S. patent application Ser. No. 10/606,985 entitled
METHOD, SYSTEM AND PROGRAM PRODUCT FOR
PROVIDING A STATUS OF A TRANSACTION WITH AN
APPLICATION ON A SERVER, filed on May 9, 2008, the
contents of which are hereby incorporated by reference in
their entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

In general, the present invention provides a method, system
and program product for providing a status of a transaction
with an application on a server. Specifically, the present
invention allows a server to be polled from a client to detect
the status of a transaction independent of a persistent network
connection.

2. Related Art

As computer technology becomes more advanced, com-
puter users are increasingly being provided with the capabil-
ity to conduct business and/or personal transactions from
their home or office computers. For example, today a com-
puter user can purchase goods/services, pay bills and manage
a business over a computer network such as the Internet. In
general, a network-based transaction occurs in a client-server
environment with the computer system operated by the user
being the client, and the computer system with which the
client communicates being the server. To conduct a transac-
tion, the client will typically establish a connection with the
server and then transmit a request (e.g., a HTTP request)
thereto. Upon receipt, the server will invoke one or more
applications to process the request.

Unfortunately, as is well known, network connections
between a client and a server often suffer various interrup-
tions. Such interruptions can be due to, for example, a high
volume of network traffic being received by the server, ser-
vice provider errors, etc. In any event, the interruption of the
connection often leads to loss of data, which can undermine
the transaction being requested by the client. This is espe-
cially the case where the transaction takes an appreciable
amount of time to process. For example, if a computer user is
attempting to purchase goods on-line, the transaction could
involve verifying credit card information. Verifying credit
card information can require an application on the server to
interact with one or more “external resources” (e.g., a bank).
As such, verification of credit card information can often take
several minutes.

While the transaction is being processed, status informa-
tionis often desired by the computer user (especially for more
time consuming transactions such as credit card verification).
Specifically, the computer user often wishes to know whether
the transaction is still pending, has been completed or has
timed out. Previous systems for communicating transaction
information to the computer users, however, all relied upon a
persistent connection between the client and the server. Under
such systems, as the connections were interrupted, the status
information was lost or delayed. Since the persistence of a
connection between a server and client is extremely difficult
if not impossible to ensure, the previous systems failed to
provide a reliable way of obtaining transaction status infor-
mation.

In view of the foregoing, there exists a need for a method,
system and program product for providing a status of a trans-
action with an application on a server. Specifically, a need

10

15

20

25

30

35

40

45

50

55

60

65

2

exists for a system that allows a server to be polled from a
client to detect the status of a transaction on a server. To this
extent, a need exists for a system that allows a “stateful”
relationship between a client and server to be maintained
independent of a persistent network connection. A further
need exists for a system that provides a flexible/defineable
polling cycle and algorithm that is based on standard Internet
technology components, and that is concealed from an end
user.

SUMMARY OF THE INVENTION

In general, the present invention provides a method, system
and program product for providing a status of a transaction
with an application on a server. Specifically, under the present
invention, a request for a transaction is communicated to the
server from a client (e.g., from a browser on the client). A
server agent on the server will initiate the transaction by
invoking an application to process the request. Thereafter, the
server agent will call a client code generator, which will
generate polling code. Typically, the polling code includes a
Uniform Resource Locator (URL) that includes a set of
parameters and identifies the transaction requested. The set of
parameters generally includes a polling count and a delay
time. The polling code is communicated to the client, which
after the delay time, will poll the server for a status of the
transaction by communicating the URL to the server agent.
Upon receipt, the server agent will use the information in the
URL to determine the status of the transaction. If the trans-
action is complete, the client code generator will redirect the
client to a completion (web) page. If the transaction is not
complete, and the polling count identified in the URL equals
a polling count limit, the client is redirected to an exception
(web) page. However, if the transaction is not complete and
the polling count limit has not been reached, the client code
generator will generate a new polling code and the cycle will
be repeated until the limit is reached or the transaction is
complete.

A first aspect of the present invention provides a method for
providing a status of a transaction with an application on a
server, comprising: receiving a request for a transaction on
the server from a client; invoking the application on the server
to process the request; generating a first polling code having
a first Uniform Resource Locator (URL) that includes a first
set of parameters, and sending the first polling code to the
client; and communicating the first URL from the client to the
server to request the status of the transaction.

A second aspect of the present invention provides a method
for providing a status of a transaction with an application on
a server, comprising: receiving a HTTP request for a transac-
tion on the server from a browser on a client; invoking the
application on the server to process the HI'TP request; calling
aclient code generator on the server to generate a first polling
code having a first Uniform Resource Locator (URL) that
includes a first set of parameters, wherein the first set of
parameters comprises a delay time and a polling count; send-
ing the first polling code to the browser; and communicating
the first URL in the first polling code from the browser to a
server agent on the server after expiration of the delay time to
request the status of the transaction.

A third aspect of the present invention provides a system
for providing a status of a transaction with an application on
a server, comprising: a server agent for receiving a request for
the transaction from a client, and for initiating the transaction
based on the request; a client code generator invoked by the
server agent for generating a first polling code having a first
Uniform Resource Locator (URL) that includes a first set of

US 9,152,962 B2

3

parameters, and for sending the first polling code to the client,
wherein the client communicates the first URL to the server
agent to request the status of the transaction.

A fourth aspect of the present invention provides a program
product stored on a recordable medium for providing a status
of a transaction with an application on a server, which when
executed, comprises: agent program code configured to
receive a request for the transaction from a client, and to
initiate the transaction based on the request; generator pro-
gram code invoked by the agent program code configured to
generate a first polling code having a first Uniform Resource
Locator (URL) that includes a first set of parameters, and to
send the first polling code to the client, wherein the client
communicates the first URL to the agent program code to
request the status of the transaction.

Therefore, the present invention provides a method, system
and program product for providing a status of a transaction
with an application on a server.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of this invention will be more
readily understood from the following detailed description of
the various aspects of the invention taken in conjunction with
the accompanying drawings in which:

FIG. 1 depicts a system for providing a status of a transac-
tion with an application on a server, according to the present
invention.

FIG. 2 depicts method flow diagram, according to the
present invention.

The drawings are merely schematic representations, not
intended to portray specific parameters of the invention. The
drawings are intended to depict only typical embodiments of
the invention, and therefore should not be considered as lim-
iting the scope of the invention. In the drawings, like num-
bering represents like elements.

DETAILED DESCRIPTION OF THE INVENTION

As indicated above, the present invention provides a
method, system and program product for providing a status of
a transaction with an application on a server. Specifically,
under the present invention, a request for a transaction is
communicated to the server from a client (e.g., from a
browser on the client). A server agent on the server will
initiate the transaction by invoking an application to process
the request. Thereafter, the server agent will call a client code
generator, which will generate polling code. Typically, the
polling code includes a Uniform Resource Locator (URL)
that includes a set of parameters and identifies the transaction
requested. The set of parameters generally includes a polling
count and a delay time. The polling code is communicated to
the client, which after the delay time, will poll the server for
a status of the transaction by communicating the URL to the
server agent. Upon receipt, the server agent will use the
information in the URL to determine the status of the trans-
action. If the transaction is complete, the client code genera-
tor will redirect the client to a completion (web) page. If the
transaction is not complete, and the polling count identified in
the URL equals a polling count limit, the client is redirected
to an exception (web) page. However, if the transaction is not
complete and the polling count limit has not been reached, the
client code generator will generate a new polling code and the
cycle will be repeated until the limit is reached or the trans-
action is complete. Therefore, the present invention allows a
status of a transaction to be provided without relying on a

10

15

20

25

30

35

40

45

50

55

60

65

4

persistent network connection between the server and the
client. Moreover, the present invention allows the polling to
be concealed from the user.

Referring now to FIG. 1, a system 10 for providing a status
of'a transaction with an application 32 on server 12 is shown.
In general, client 34 will communicate with server 12 to
conduct a transaction and obtain transaction status informa-
tion. To this extent, client 34 is intended to represent any type
of computerized system that is capable of communicating
with server 12. For example, client 34 could be a personal
computer, a laptop, a workstation, a hand held device, etc. In
any event, as depicted, server 12 generally comprises central
processing unit (CPU) 14, memory 16, bus 18, input/output
(I/0) interfaces 20, external devices/resources 22 and storage
unit 24.

CPU 14 may comprise a single processing unit, or be
distributed across one or more processing units in one or more
locations, e.g., on a client and server. Memory 16 may com-
prise any known type of data storage and/or transmission
media, including magnetic media, optical media, random
access memory (RAM), read-only memory (ROM), a data
cache, a data object, etc. Moreover, similar to CPU 14,
memory 16 may reside at a single physical location, compris-
ing one or more types of data storage, or be distributed across
a plurality of physical systems in various forms.

1/0O interfaces 20 may comprise any system for exchanging
information to/from an external source. External devices/
resources 22 may comprise any known type of external
device, including speakers, a CRT, LCD screen, hand-held
device, keyboard, mouse, voice recognition system, speech
output system, printer, monitor/display, facsimile, pager, etc.
Bus 18 provides a communication link between each of the
components in server 12 and likewise may comprise any
known type of transmission link, including electrical, optical,
wireless, etc.

Storage unit 24 can be any system (e.g., a database) capable
of'providing storage for information such as transaction infor-
mation, parameters, URLs, etc. under the present invention.
As such, storage unit 24 could include one or more storage
devices, such as a magnetic disk drive or an optical disk drive.
In another embodiment, storage unit 24 includes data distrib-
uted across, for example, a local area network (LAN), wide
area network (WAN) or a storage area network (SAN) (not
shown). It should also be understood that although not shown,
additional components, such as cache memory, communica-
tion systems, system software, etc., may be incorporated into
server 12. It should be understood that although not shown,
client 34 will typically include computer components similar
to server 12.

Communication between server 12 and client 34 could
occur via any known manner. For example, such communi-
cation could occur via a direct hardwired connection (e.g.,
serial port), or via an addressable connection that may utilize
any combination of wireline and/or wireless transmission
methods. In any event, server 12 and client 34 may be con-
nected via the Internet, a wide area network (WAN), a local
areanetwork (LAN), a virtual private network (VPN) or other
private network. Server 12 and client 34 may utilize conven-
tional network connectivity, such as Token Ring, Ethernet,
WiFi or other conventional communications standards.
Where client 34 communicates with server 12 via the Inter-
net, connectivity could be provided by conventional TCP/IP
sockets-based protocol. In this instance, client 34 would uti-
lize an Internet service provider to establish connectivity to
the server.

Shown in memory 16 of server 12 is transaction manage-
ment system 26 and application 32. Transaction management

US 9,152,962 B2

5

system 26 includes server agent 28 and client code generator
30. Server agent 28 can be implemented using any known
technology. For example, server agent 28 could be a servlet,
and Enterprise Java Bean (EJB), etc. In any event, when user
40 wishes to interact with server 12 (e.g., to purchase goods/
services online), user 40 will input information into browser
36. Such information could include, for example, credit card
information that must be verified. In this example, the credit
card information will be transmitted to server 12 as a (Hyper-
text Transfer Protocol “HTTP”) request. Upon receipt, server
agent 28 will initiate the transaction (e.g., credit card verifi-
cation) by invoking application 32 to process the request. For
example, application 32 could be a financial processing appli-
cation. In verifying the credit card information, application
32 might communicate with one or more external resources
42 (e.g., a banking infrastructure). To this extent, external
resource 42 could include personnel, hardware, software, or
any combination thereof. Regardless, after invoking applica-
tion 32, server agent 28 will initiate/call client code generator
30, which will generate polling code.

In a typical embodiment, client code generator 30 gener-
ates polling code that can be run by script system 38 within
browser 36. Typically, the polling code includes a URL that
includes a set of parameters and identifies the transaction that
was requested (e.g., credit card verification). Typically, the set
of'parameters are derived from a configuration of server agent
28. To this extent, the set of parameters can be hardcoded into
server agent 28, derived from a configuration file that is
accessible to server agent 28, etc. In any event, the configu-
ration of server agent 28 generally includes a delay time, a
polling count and a polling count limit. The delay time dic-
tates how long the polling code is suspended in browser 36
before execution by script system 38. The polling count indi-
cates how many polling cycles have been processed. The
polling count limit dictates the maximum number of polling
cycles to be performed before the polling loop is exited and an
exception is generated. Listed below is an illustrative param-
eter configuration of server agent 28.

PARAMETER VALUE DESCRIPTION

Delay 15 Seconds ~ How long execution of
polling code is suspended
in browser

Polling Count 1 How many polling cycles
have been processed

Polling Count Limit 3 How many polling cycles

occur before polling loop is
exited

Based on this configuration, client code generator 30 will
generate polling code having the following parameters:

PARAMETER VALUE DESCRIPTION

Delay 15 Seconds How long execution of
polling code is suspended
in browser

Polling Count 1 How many polling cycles

have been processed

These parameters are included in the polling code as a URL
that also identifies the transaction requested. The polling code
is sent to browser 36. Upon receipt, script system 38 will
execute the polling code after expiration of the delay time
(e.g., 15 seconds). Execution of the polling code will cause
client 34 to poll server 12 to request the status of the transac-

10

15

20

25

30

35

40

45

50

55

60

6

tion by communicating the URL from browser 36 to server
agent 28. Upon receipt, server agent 28 will process the URL
to check the status of the transaction (e.g., by querying appli-
cation 32 or a transaction monitor, etc.). If the transaction is
complete, server agent 28 will call client code generator 30,
which will generate and communicate completion code to
client 34. The completion code causes browser 36 to be redi-
rected to a completion (web) page. If, however, the transac-
tion is not complete, server agent 28 will compare the polling
count in the URL to the polling count limit in its configura-
tion. In this example, the polling count is “1”* and the polling
count limit is “3.” Accordingly, the limit has not been reached.

Since the polling count limit has not been reached, server
agent 28 will repeat the cycle by calling client code generator
30 to generate a second polling code with the following
values.

PARAMETER VALUE DESCRIPTION

Delay 15 Seconds How long execution of
polling code is suspended
in browser

Polling Count 2 How many polling cycles

have been processed

As can be seen, the delay time remained the same, but the
polling count has been incremented by one. These parameters
are included in the second polling code as a second URL that
also identifies the transaction. Similar to the first polling code,
the second polling code is sent to browser 26 on client 34.
After expiration of the delay time, script system 38 will
execute the second polling code. That is, client 34 will poll
server 12 to request the status of the transaction by commu-
nicating the second URL from browser 36 to server agent 28.
Upon receipt, server agent 28 will again check the status of
the transaction. If the transaction is complete, server agent 28
will call client code generator 30, which will communicate
completion code to client 34 that causes browser 36 to be
redirected to a completion (web) page. If the transaction is not
yet complete, server agent 28 will determine whether the
polling count limit of “3” has been reached. Since, the polling
count in the second URL is “2” and the polling count limit is
“3,” the polling count limit has not been reached.

Inthis case, server agent 28 will once again call client code
generator 30 to generate a third polling code. In generating
the third polling code, client code generator 30 will increment
the polling count by one. Accordingly, the following values
will result:

PARAMETER VALUE DESCRIPTION

Delay 15 Seconds How long execution of
polling code is suspended
in browser

Polling Count 3 How many polling cycles

have been processed

These parameters will be included in a third URL that also
identifies the transaction. Similar to the previous cycles, the
third polling code including the third URL is sent to browser
36 on client 34. After expiration of the delay time, script
system 38 will execute the third polling code. That is, server
12 will be polled by communicating the third URL from
browser 36 on client 34 to server agent 28. Upon receiving the
third URL, server agent 28 will once again determine the
status of the transaction. If the transaction is complete, server
agent 28 will call client code generator 30, which will gener-

US 9,152,962 B2

7

ate completion code that causes browser 36 to be redirected to
a completion (web) page. However, if the transaction is not
complete, server agent 28 will determine whether the polling
count limit has been reached. Since the polling count identi-
fied in the third URL is “3” and the polling count limit is “3,”
the polling count limit has been reached in this example.
Since the transaction is incomplete and the polling count limit
has been reached, the cycle ends. Thus, server agent 28 will
call client code generator 30, which will generate exception
code. The exception code is communicated to client 34 and
causes browser 36 to be redirected to an exception (web)
page.

Referring now to FIG. 2, a method flow diagram 50 accord-
ing to the present invention is shown. As depicted, first step S1
in method 50 is to transmit a request for a transaction from the
browser to the server. In step S2, the server agent will initiate
the transaction by invoking an application to process the
request. In step S3, the server agent will call the client code
generator. In step S4, the client code generator will generate
and send polling code to the browser. As indicated above, the
polling code is based on a configuration of the server agent
and includes the parameters of delay time and polling count.
The parameters as well as transaction are identified in a URL
within the polling code that is sent to the browser. In step S5,
the browser will communicate the URL in the polling code to
the server agent after expiration of the delay time. In step S6,
the server agent will determine whether the transaction is
complete. Ifthe transaction is complete, the server agent will
call the client code generator, which will generate completion
code to redirect browser to a completion page in step S7. If the
transaction was not complete, the server agent will determine
whether the polling count limit has been reached in step S8. If
it has, the client code generator will be called and will gen-
erate exception code to redirect the browser to an exception
page in step S9. If, however, the polling count limit has not
been reached, the server agent will call the client code gen-
erator to generate a new polling code so that the cycle can be
repeated.

It should be understood that the present invention can be
realized in hardware, software, or a combination of hardware
and software. Any kind of computer/server system(s)—or
other apparatus adapted for carrying out the methods
described herein—is suited. A typical combination of hard-
ware and software could be a general purpose computer sys-
tem with a computer program that, when loaded and
executed, carries out the respective methods described herein.
Alternatively, a specific use computer, containing specialized
hardware for carrying out one or more of the functional tasks
of the invention, could be utilized. The present invention can
also be embedded in a computer program product, which
comprises all the respective features enabling the implemen-
tation of the methods described herein, and which—when
loaded in a computer system—is able to carry out these meth-
ods. Computer program, software program, program, or soft-
ware, in the present context mean any expression, in any
language, code or notation, of a set of instructions intended to
cause a system having an information processing capability
to perform a particular function either directly or after either
or both of the following: (a) conversion to another language,
code or notation; and/or (b) reproduction in a different mate-
rial form.

The foregoing description of the preferred embodiments of
this invention has been presented for purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed, and obviously,
many modifications and variations are possible. Such modi-
fications and variations that may be apparent to a person

10

15

20

25

30

35

40

45

50

55

60

65

8

skilled in the art are intended to be included within the scope
of'this invention as defined by the accompanying claims. For
example, although the present invention was described in the
context of credit card verification, the teachings described
herein can be used to provide a status of any type of transac-
tion. Moreover, it should be understood that the values of the
parameters used herein are intended to be illustrative only.

I claim:

1. A method for providing a status of a transaction with an
application on a server, comprising:

receiving, by the server, a request for a transaction on the

server from a client;

invoking the application on the server to process the

request;

generating, by the server, a first code having a first Uniform

Resource Locator (URL) that includes a first set of
parameters, and sending, by the server, the first code to
the client; and

receiving, by the server, the first URL from the client

requesting the status of the transaction.

2. The method of claim 1, wherein the first set of param-
eters comprises a delay time and a count.

3. The method of claim 2, wherein the receiving of the first
URL step comprises receiving the first URL from the client
after expiration of the delay time.

4. The method of claim 2, wherein the receiving of the first
URL step further comprises receiving, by a server agent on
the server, the first URL from a browser on the client after
expiration of the delay time, and wherein the server agent
determines the status of the transaction based on the first
URL.

5. The method of claim 2, further comprising:

generating, by the server after the receiving of the first URL

step, a second code having a second URL that identifies
a second set of parameters if the transaction is incom-
plete and the count does not equal a count limit;
sending, by the server, the second code to the client; and
receiving, by the server, the second code from the client
after expiration of the delay time to process a request for
the status of the transaction.

6. The method of claim 5, wherein the generating step
comprises incrementing the count of the first set of param-
eters by one to yield a new count.

7. The method of claim 2, further comprising directing the
client to an exception page after the receiving of the first URL
step if the count equals a count limit and the transaction is
incomplete.

8. The method of claim 2, further comprising directing the
clientto a completion page after the receiving of the first URL
step if the transaction is complete.

9. A method for providing a status of a transaction with an
application on a server, comprising:

receiving, by the server, a HI'TP request for a transaction

on the server from a browser on a client;

invoking the application on the server to process the HT TP

request;

calling, by the server, a client code generator to generate a

first code having a first Uniform Resource Locator
(URL) that includes a first set of parameters, wherein the
first set of parameters comprises a delay time and a
count;

sending, by the server, the first code to the browser; and

receiving, by the server, the first URL in the first code from

the browser after expiration of the delay time to process
a request for the status of the transaction.

US 9,152,962 B2

9

10. The method of claim 9, wherein the first URL is pro-
cessed by a server agent on the server to determine the status
of the transaction.

11. The method of claim 9, further comprising directing the
browser to a completion page if the transaction is complete.

12. The method of claim 9, further comprising directing the
browser to an exception page if the transaction is incomplete
and the count equals a count limit.

13. The method of claim 9, further comprising generating,
by the server, a second code having a second Uniform
Resource Locator (URL) that identifies a second set of
parameters and the transaction requested if the transaction is
incomplete and the count does not equal a count limit,
wherein the second set of parameters comprises the delay
time and a new count.

14. The method of claim 13, further comprising:

sending, by the server, the second code to the browser; and

receiving, by the server, the second URL in the second code

from the browser after expiration of the delay time to
request the status of the transaction.

15. A system for providing a status of a transaction with an
application on a server, comprising:

server agent code stored in a memory and executable by a

processing unit for receiving a request for the transaction
from a client, and for initiating the transaction based on
the request;

client code generator code stored in the memory and

invoked by the server agent code for generating a first
code having a first Uniform Resource Locator (URL)
that includes a first set of parameters, and for sending the
first code to the client, wherein the client communicates
the first URL to the server agent code to request the
status of the transaction.

16. The system of claim 15, wherein the client comprises a
browser for receiving the first code, and for communicating
the first URL to the server agent code.

17. The system of claim 15, wherein the first set of param-
eters includes a delay time and a count.

18. The system of claim 17, wherein the client communi-
cates the first URL to the server agent code after expiration of
the delay time.

19. The system of claim 17, wherein the server agent code
processes the first URL to determine the status of the trans-

10

15

20

25

30

35

40

10

action, and invokes the client code generator code to generate
a second code having a second URL that identifies a second
set of parameters if the transaction is incomplete and the
count does not equal a count limit.

20. The system of claim 19, wherein the second set of
parameters comprises the delay time and a new count, and
wherein the client code generator code increments the count
of the first set of parameters by one to yield the new count.

21. A computer program product for providing a status of a
transaction with an application on a server, the computer
program product comprising:

a non-transitory computer readable storage media;

first program instructions to receive a request for the trans-

action from a client, and to initiate the transaction based
on the request;

second program instructions, invoked by the first program

instructions, to generate a first code having a first Uni-
form Resource Locator (URL) that includes a first set of
parameters, and to send the first code to the client,
wherein the first program instructions receive the first
URL from the client to process a request for the status of
the transaction; and wherein

the first and second program instructions are stored on the

computer readable storage media.

22. The computer program product of claim 21, wherein
the first set of parameters includes a delay time and a count.

23. The computer program product of claim 22, wherein
the client comprises a browser configured to receive the first
code, and to communicate the first URL to the first program
instructions after expiration of the delay time.

24. The computer program product of claim 22, wherein
the first program instructions are further configured to pro-
cess the first URL to determine the status of the transaction,
and to invoke the second program instructions to generate a
second code having a second URL that identifies a second set
of parameters if the transaction is incomplete and the count
does not equal a count limit.

25. The computer program product of claim 24, wherein
the second set of parameters comprises the delay time and a
new count, and wherein the second program instructions
increments the count of the first set of parameters by one to
yield the new count.

